- Physiknobelpreis 1910: Johannes Diderik van der Waals
- Physiknobelpreis 1910: Johannes Diderik van der WaalsDer niederländische Physiker erhielt den Nobelpreis für seine Arbeiten über die Zustandsgleichung der Gase und Flüssigkeiten.Johannes Diderik van der Waals, * Leiden 23. 11. 1837,✝ Amsterdam 8. 3. 1923; 1864-77 Lehrer, später Schuldirektor, 1877-1907 Professor für Physik in Amsterdam; Entwicklung der Zustandsgleichung der realen Gase, 1889 Formulierung der Theorie binärer Gemische, später thermodynamische Theorien der Oberflächenspannung und Kapillarität.Würdigung der preisgekrönten LeistungAm Samstag, den 14. Juni 1873, um 3 Uhr nachmittags trat der 35-jährige Lehrer Johannes Diderik van der Waals zur Doktorprüfung an der Universität Leiden an. Der Titel seiner Doktorarbeit lautete »Die Kontinuität des gasförmigen und flüssigen Zustands«. Van der Waals hatte neben seinem Beruf studiert; dass er überhaupt zur Promotion zugelassen wurde, verdankte er einem neuen Gesetz, das Doktoranden der Naturwissenschaften von der bis dahin obligatorischen Prüfung in Latein und Altgriechisch befreite. Seine Arbeit fand sehr schnell die Aufmerksamkeit der Fachwelt und 1877 wurde er auf den Lehrstuhl für Physik der neu gegründeten Universität Amsterdam berufen, wo er seine Forschung konsequent weiterentwickelte.PhasenübergängeDie Aggregatzustände (Phasen) der Materie — fest, flüssig und gasförmig — und die Phasenübergänge zwischen ihnen kennt jeder. Das Schmelzen von Eis und das Verdunsten von Wasser sind aus dem Alltag so vertraut, dass sich kaum jemand fragt, was eigentlich genau dabei geschieht.Im 17. und 18. Jahrhundert hatten Untersuchungen an Gasen ein ziemlich einheitliches Bild ergeben: Das Produkt aus dem Druck p und dem Volumen V ist für eine gegebene Stoffmengeproportional zur absoluten Temperatur T. Diesen mathematischen Zusammenhang zwischen den Größen p, V und T nennt man Zustandsgleichung des idealen Gases. Im 19. Jahrhundert setzte sich mehr und mehr die Ansicht durch, dass Gase aus kleinsten Teilchen (Molekülen) bestehen. Die kinetische Gastheorie erklärte den Druck des Gases durch Stöße der als unendlich klein angenommenen Gasteilchen gegen die Gefäßwände. Für höhere Temperatur wächst die Geschwindigkeit der Moleküle, die Stöße gegen die Wand werden heftiger, und der Druck nimmt zu.Der kritische PunktDie bei der Entwicklung von Dampfmaschinen durchgeführten systematischen Untersuchungen des Gas-Flüssigkeits-Phasenübergangs von Wasser zeigten, dass die Zustandsgleichung des idealen Gases die Verhältnisse in der Nähe des Übergangs nicht richtig beschrieb. Da die damaligen Apparaturen die erforderlichen Drücke nicht aushielten, ergab sich ein klareres Bild erst, als anstelle von Wasser andere Stoffe verwendet wurden. Wichtig waren insbesondere die Untersuchungen des irischen Physikochemikers Thomas Andrews an Kohlendioxid. Er maß bei jeweils konstanter Temperatur für eine gegebene Menge des Gases das Volumen in Abhängigkeit vom Druck.Diese Daten, in einem Volumen-Druck-Diagramm aufgezeichnet, ergeben eine Kurve, eine so genannte Isotherme. Je weiter oben eine Kurve verläuft, desto höher ist die Temperatur. Bei tiefen Temperaturen haben die Isothermen drei Abschnitte: links (bei kleinem Volumen) die flüssige Phase, rechts (bei großem Volumen) die Gasphase und dazwischen, auf dem waagrechten Teil der Kurve, einen Bereich der Koexistenz beider Phasen. Je nachdem, ob hier ein größerer oder kleinerer Anteil der Substanz als Gas vorliegt, ist das Volumen größer oder kleiner; der Druck bleibt dabei gleich. Dieser Koexistenzdruck wächst beim Übergang zu höheren Isothermen, also bei steigender Temperatur. Auch schrumpft der flache Teil der Isotherme bis auf den so genannten kritischen Punkt zusammen, der gekennzeichnet ist durch die kritische Temperatur, das kritische Volumen und den kritischen Druck. Unterhalb der kritischen Temperatur herrschen klare Verhältnisse: Auf dem flachen Mittelstück der Isotherme findet man Gas und Flüssigkeit im Gefäß, getrennt durch einen Meniskus (Flüssigkeitsspiegel); auf dem rechten Stück nur Gas, auf dem linken nur Flüssigkeit. Oberhalb der kritischen Temperatur dagegen kann nirgendwo auf der Isotherme ein Meniskus beobachtet werden. Hier handelt es sich nicht mehr eindeutig um ein Gas oder eine Flüssigkeit.Eine neue GleichungDie Form der Isothermen gestattet es, vom Gaszustand durch geschickte Steuerung von Druck und Temperatur um das Koexistenzgebiet herum zum flüssigen Zustand zu kommen, ohne dabei einen Meniskus oder eine abrupte Änderung etwa der Dichte zu beobachten. Der gasförmige und flüssige Zustand sind also nur zwei Extreme eines ganzen Kontinuums möglicher Zustände. Darauf bezieht sich der Titel der Doktorarbeit, in der van der Waals die Zustandsgleichung des idealen Gases so verallgemeinerte, dass sie die Ergebnisse der Experimente wiedergab. Er nahm dazu an, dass die Eigenschaften der Moleküle nicht davon abhängen, in welcher Phase sich die Substanz befindet. In der Flüssigkeit haben die Moleküle lediglich kleinere Abstände voneinander. Dann aber macht sich die räumliche Ausdehnung der Moleküle selbst bemerkbar, die van der Waals in seiner neuen Zustandsgleichung vom gesamten Gefäßvolumen abzog. Außerdem nahm er an, dass die Teilchen bei genügend kleinen Abständen anziehende Kräfte aufeinander ausüben, was eine Änderung des Drucks bewirkt. Seine Zustandsgleichung zeigte in Übereinstimmung mit den Experimenten einen kritischen Punkt. Aus Messungen von Isothermen oberhalb der kritischen Temperatur konnte er diese vorhersagen. Dies war für die Verflüssigung von Gasen und die um 1900 beginnende Tieftemperaturphysik von enormer Bedeutung, wie van der Waals' Kollege und Landsmann Kamerlingh Onnes (Nobelpreis 1913) mehrfach betonte.Universelle Bedeutung1880 fand van der Waals das so genannte Gesetz der korrespondierenden Zustände. Es besagt, dass zwar die Zahlenwerte von Druck, Volumen und Temperatur am kritischen Punkt für verschiedene Substanzen sehr unterschiedlich sein können, sich aber dennoch alle Substanzen gleich verhalten, wenn nur alle Messgrößen auf die jeweiligen kritischen Werte bezogen werden. Auch zeigte die spätere Forschung die Anwendbarkeit der Ideen van der Waals' nicht nur auf den Übergang zwischen Gas und Flüssigkeit, sondern auch auf andere Phasenübergänge. Dies begründete das Konzept des universellen Verhaltens verschiedener Substanzen in der Nähe des kritischen Punkts, das in der modernen Theorie der Phasenübergänge (Nobelpreis 1982, Wilson) zentral ist. Obwohl sich noch zu van der Waals' Lebzeiten gezeigt hatte, dass seine Gleichung die Verhältnisse in unmittelbarer Nähe des kritischen Punkts nicht fehlerfrei wiedergibt, bleibt seine Arbeit ein Musterbeispiel für das Vorgehen eines weitsichtigen Forschers, der mit wenigen einfachen Annahmen zum Kern eines komplexen Problems vordringt und so ein völlig neues Forschungsgebiet eröffnet.Während 1873 selbst die Existenz von Molekülen noch umstritten war, setzten sich bis zu Beginn des 20. Jahrhunderts van der Waals' Ideen als wissenschaftliches Allgemeingut durch, sodass die Verleihung des Nobelpreises die Fachwelt nicht überraschte.J. Stolze
Universal-Lexikon. 2012.